Generalized linear mixed models for biologists

Ben Bolker, University of Florida

McMaster University

7 May 2009

Ben Bolker, University of Florida GLMM for biologists

Outline

- Examples
- Generalized linear models
- Mixed models (LMMs)

2 GLMMs

- Estimation
- Inference

Examples Generalized linear models Mixed models (LMMs)

▲ □ ▶ ▲ □ ▶ ▲

э

æ

Outline

Examples

• Generalized linear models

Mixed models (LMMs)

2 GLMMs

- Estimation
- Inference

Examples Generalized linear models Mixed models (LMMs)

Coral protection by symbionts

Number of predation events

Ben Bolker, University of Florida GLMM for biologists

 Precursors
 Examples

 GLMMs
 Generalized linear models

 References
 Mixed models (LMMs)

Arabidopsis response to fertilization & clipping

panel: nutrient, color: genotype

Precursors Examples GLMMs Generalized lin References Mixed models

Environmental stress: Glycera cell survival

Ben Bolker, University of Florida GLMM for biologists

Examples Generalized linear models Mixed models (LMMs)

▲ □ ▶ ▲ □ ▶ ▲

э

æ

Outline

- Examples
- Generalized linear models
- Mixed models (LMMs)

- Estimation
- Inference

Precursors Ex GLMMs Ge References M

Examples Generalized linear models Mixed models (LMMs)

・ 一 マ ト ・ 日 ト ・

Generalized linear models (GLMs)

non-normal data, (some) nonlinear relationships; modeling via linear predictor

- presence/absence, alive/dead (binomial)
 count data (Poisson, negative binomial)
- typical applications: **logistic regression** (binomial/logistic), **Poisson regression** (Poisson/exponential)

▲ 同 ▶ ▲ 三 ▶ ▲

Generalized linear models (GLMs)

- non-normal data, (some) nonlinear relationships; modeling via linear predictor
- presence/absence, alive/dead (binomial)
 - count data (Poisson, negative binomial)
- typical applications: **logistic regression** (binomial/logistic), **Poisson regression** (Poisson/exponential)

▲ 同 ▶ ▲ 三 ▶ ▲

Generalized linear models (GLMs)

- non-normal data, (some) nonlinear relationships; modeling via linear predictor
- presence/absence, alive/dead (binomial)
 - count data (Poisson, negative binomial)
- typical applications: logistic regression (binomial/logistic), Poisson regression (Poisson/exponential)

Examples Generalized linear models Mixed models (LMMs)

▲ □ ▶ ▲ □ ▶ ▲

э

æ

Outline

1 Precursors

- Examples
- Generalized linear models
- Mixed models (LMMs)

2 GLMMs

- Estimation
- Inference

・ 一 マ ト ・ 日 ト ・

- examples: experimental or observational "blocks" (temporal, spatial); species or genera; individuals; genotypes
- inference on **population** of units rather than individual units
- (units randomly selected from all possible units)
- (reasonably large number of units)

・ 一 マ ト ・ 日 ト ・

- examples: experimental or observational "blocks" (temporal, spatial); species or genera; individuals; genotypes
- inference on **population** of units rather than individual units
- (units randomly selected from all possible units)
- (reasonably large number of units)

・ 一 マ ト ・ 日 ト ・

- examples: experimental or observational "blocks" (temporal, spatial); species or genera; individuals; genotypes
- inference on **population** of units rather than individual units
- (units randomly selected from all possible units)
- (reasonably large number of units)

- examples: experimental or observational "blocks" (temporal, spatial); species or genera; individuals; genotypes
- inference on **population** of units rather than individual units
- (units randomly selected from all possible units)
- (reasonably large number of units)

Mixed models: classical approach

- Partition sums of squares, calculate null expectations if fixed effect is 0 (all coefficients β_i = 0) or RE variance=0
- Figure out numerator (model) & denominator (residual) sums of squares and degrees of freedom
 - Model SSQ, df: variability explained by the "effect" (difference between model with and without the effect) and number of parameters used
 - **Residual SSQ, df**: variability caused by finite sample size (number of observations minus number "used up" by the model)

▲ 同 ▶ ▲ 三 ▶ ▲

Mixed models: classical approach

- Partition sums of squares, calculate null expectations if fixed effect is 0 (all coefficients β_i = 0) or RE variance=0
- Figure out numerator (model) & denominator (residual) sums of squares and degrees of freedom
 - Model SSQ, df: variability explained by the "effect" (difference between model with and without the effect) and number of parameters used
 - **Residual SSQ, df**: variability caused by finite sample size (number of observations minus number "used up" by the model)

・ 一 マ ト ・ 日 ト ・

Examples Generalized linear models Mixed models (LMMs)

Classical LMM cont.

- Robust, practical
- OK if
 - data are Normal
 - design is (nearly) balanced
 - design not too complicated (single RE, or nested REs) (crossed REs: e.g. year effects that apply across all spatial blocks)

・ 一 マ ト ・ 日 ト ・

Precursors Examples GLMMs Generalized linear mod References Mixed models (LMMs)

Mixed models: modern approach

- Construct a likelihood for the data (Prob(observing data|parameters)) — in mixed models, requires integrating over possible values of REs (marginal likelihood)
- e.g.:
 - likelihood of *i*th obs. in block *j* is $L_{\text{Normal}}(x_{ij}|\theta_i, \sigma_w^2)$
 - likelihood of a particular block mean θ_j is $L_{\text{Normal}}(\theta_j|0,\sigma_b^2)$
 - overall likelihood is $\int L(x_{ij}|\theta_j, \sigma_w^2) L(\theta_j|0, \sigma_b^2) d\theta_j$
- Figure out how to do the integral

Mixed models: modern approach

- Construct a likelihood for the data (Prob(observing data|parameters)) — in mixed models, requires integrating over possible values of REs (marginal likelihood)
- e.g.:
 - likelihood of i^{th} obs. in block j is $L_{\text{Normal}}(x_{ij}|\theta_i, \sigma_w^2)$
 - likelihood of a particular block mean θ_j is $L_{\text{Normal}}(\theta_j|0,\sigma_b^2)$
 - overall likelihood is $\int L(x_{ij}|\theta_j, \sigma_w^2) L(\theta_j|0, \sigma_b^2) d\theta_j$
- Figure out how to do the integral

Mixed models: modern approach

- Construct a likelihood for the data (Prob(observing data|parameters)) — in mixed models, requires integrating over possible values of REs (marginal likelihood)
- e.g.:
 - likelihood of i^{th} obs. in block j is $L_{\text{Normal}}(x_{ij}|\theta_i, \sigma_w^2)$
 - likelihood of a particular block mean θ_j is $L_{\text{Normal}}(\theta_j | 0, \sigma_b^2)$
 - overall likelihood is $\int L(x_{ij}|\theta_j, \sigma_w^2) L(\theta_j|0, \sigma_b^2) d\theta_j$
- Figure out how to do the integral

Examples Generalized linear models Mixed models (LMMs)

Shrinkage

- Coral symbionts: simple experimental blocks, RE affects intercept (overall probability of predation in block)
- *Glycera*: applied to cells from 10 individuals, RE again affects intercept (cell survival prob.)
- Arabidopsis: region (3 levels, treated as fixed) / population / genotype: affects intercept (overall fruit set) as well as treatment effects (nutrients, herbivory, interaction)

Outline

Precursors

- Examples
- Generalized linear models
- Mixed models (LMMs)

→ < ∃ →</p>

æ

- alternate steps of estimating GLM given known block variances; estimate LMMs given GLM fit
- flexible (allows spatial/temporal correlations, crossed REs)
- **biased** for small unit samples (e.g. counts < 5, binary or low-survival data) (Breslow, 2004)
- nevertheless, widely used: SAS PROC GLIMMIX, R glmmPQL: in \approx 90% of small-unit-sample cases

- alternate steps of estimating GLM given known block variances; estimate LMMs given GLM fit
- flexible (allows spatial/temporal correlations, crossed REs)
- biased for small unit samples (e.g. counts < 5, binary or low-survival data) (Breslow, 2004)
- nevertheless, widely used: SAS PROC GLIMMIX, R glmmPQL: in \approx 90% of small-unit-sample cases

- alternate steps of estimating GLM given known block variances; estimate LMMs given GLM fit
- flexible (allows spatial/temporal correlations, crossed REs)
- biased for small unit samples (e.g. counts < 5, binary or low-survival data) (Breslow, 2004)
- nevertheless, widely used: SAS PROC GLIMMIX, R glmmPQL: in \approx 90% of small-unit-sample cases

- alternate steps of estimating GLM given known block variances; estimate LMMs given GLM fit
- flexible (allows spatial/temporal correlations, crossed REs)
- biased for small unit samples (e.g. counts < 5, binary or low-survival data) (Breslow, 2004)
- nevertheless, widely used: SAS PROC GLIMMIX, R glmmPQL: in \approx 90% of small-unit-sample cases

Better methods

• Laplace approximation

- approximate marginal likelihood
- considerably more accurate than PQL
- reasonably fast and flexible
- adaptive Gauss-Hermite quadrature (AGQ)
 - compute additional terms in the integral
 - most accurate
 - slowest, hence not flexible (2–3 RE at most, maybe only 1)

Becoming available: R 1me4, SAS PROC NLMIXED, PROC GLIMMIX (v. 9.2), Genstat GLMM

Better methods

• Laplace approximation

- approximate marginal likelihood
- considerably more accurate than PQL
- reasonably fast and flexible

• adaptive Gauss-Hermite quadrature (AGQ)

- compute additional terms in the integral
- most accurate
- slowest, hence not flexible (2-3 RE at most, maybe only 1)

Becoming available: R 1me4, SAS PROC NLMIXED, PROC GLIMMIX (v. 9.2), Genstat GLMM

Better methods

• Laplace approximation

- approximate marginal likelihood
- considerably more accurate than PQL
- reasonably fast and flexible

• adaptive Gauss-Hermite quadrature (AGQ)

- compute additional terms in the integral
- most accurate
- slowest, hence not flexible (2-3 RE at most, maybe only 1)

Becoming available: R 1me4, SAS PROC NLMIXED, PROC GLIMMIX (v. 9.2), Genstat GLMM

References

Comparison of coral symbiont results

(日)

э

Outline

1 Precursors

- Examples
- Generalized linear models
- Mixed models (LMMs)

→ ∢ ≣

æ

General issues: testing RE significance

• Counting "model" df for REs

- how many parameters does a RE require? Somewhere between 1 and n ... Hard to compute, and depends on the level of focus (Vaida and Blanchard, 2005)
- Boundary effects for RE testing
 - most tests depend on null hypothesis being within the parameter's feasible range (Molenberghs and Verbeke, 2007): violated by H₀: σ² = 0

< 🗇 🕨 < 🚍 🕨

- REs may count for < 1 df (typically \approx 0.5)
- if ignored, tests are conservative

General issues: testing RE significance

• Counting "model" df for REs

- how many parameters does a RE require? Somewhere between 1 and n ... Hard to compute, and depends on the level of focus (Vaida and Blanchard, 2005)
- Boundary effects for RE testing
 - most tests depend on null hypothesis being within the parameter's feasible range (Molenberghs and Verbeke, 2007): violated by H₀: σ² = 0
 - REs may count for < 1 df (typically \approx 0.5)
 - if ignored, tests are conservative

General issues: finite-sample issues (!)

How far are we from "asymptopia"?

- Many standard procedures are asymptotic
- "Sample size" may refer the number of RE **units** often far more restricted than total number of data points
- Hard to count degrees of freedom for complex designs: Kenward-Roger correction

General issues: finite-sample issues (!)

How far are we from "asymptopia"?

- Many standard procedures are asymptotic
- "Sample size" may refer the number of RE **units** often far more restricted than total number of data points
- Hard to count degrees of freedom for complex designs: Kenward-Roger correction

General issues: finite-sample issues (!)

How far are we from "asymptopia"?

- Many standard procedures are asymptotic
- "Sample size" may refer the number of RE **units** often far more restricted than total number of data points
- Hard to count degrees of freedom for complex designs: Kenward-Roger correction

Specific procedures

- Likelihood Ratio Test:
 - need large sample size (= large # of RE units!)
- Wald (Z, χ^2 , t or F) tests
 - crude approximation
 - asymptotic (for non-overdispersed data?) or ...
 - ... how do we count residual df?
 - don't know if null distributions are correct
- AIC
 - asymptotic (properties unknown)
 - could use AIC_c, but ? need residual df

Specific procedures

• Likelihood Ratio Test:

need large sample size (= large # of RE units!)

- Wald (Z, χ^2 , t or F) tests
 - crude approximation
 - asymptotic (for non-overdispersed data?) or ...
 - ... how do we count residual df?
 - don't know if null distributions are correct
- AIC
 - asymptotic (properties unknown)
 - could use AIC_c, but ? need residual df

Specific procedures

• Likelihood Ratio Test:

need large sample size (= large # of RE units!)

- Wald (Z, χ^2 , t or F) tests
 - crude approximation
 - asymptotic (for non-overdispersed data?) or ...
 - ... how do we count residual df?
 - don't know if null distributions are correct
- AIC
 - asymptotic (properties unknown)
 - could use AIC_c, but ? need residual df

GLMMs References Estimation Inference

Glycera results

Ben Bolker, University of Florida

GLMM for biologists

Precursors GLMMs <u>Re</u>ferences

Estimation Inference

Testing assumptions

Estimation Inference

Arabidopsis genotype effects

æ

э

< /₽ > < ∃ >

Estimation Inference

Where are we?

Ben Bolker, University of Florida GLMM for biologists

Now what?

- MCMC (finicky, slow, dangerous, we have to "go Bayesian": specialized procedures for GLMMs, or WinBUGS translators? (glmmBUGS, MCMCglmm)
- quasi-Bayes mcmcsamp in 1me4 (unfinished!)
- parametric bootstrapping:
 - fit null model to data
 - simulate "data" from null model
 - fit null and working model, compute likelihood diff.
 - repeat to estimate null distribution
 - ? analogue for confidence intervals?
- challenges depend on data: total size, # REs, # RE units, overdispersion, design complexity . . .

(日)

More info: glmm.wikidot.com

Now what?

- MCMC (finicky, slow, dangerous, we have to "go Bayesian": specialized procedures for GLMMs, or WinBUGS translators? (glmmBUGS, MCMCglmm)
- quasi-Bayes mcmcsamp in 1me4 (unfinished!)
- parametric bootstrapping:
 - fit null model to data
 - simulate "data" from null model
 - fit null and working model, compute likelihood diff.
 - repeat to estimate null distribution
 - ? analogue for confidence intervals?
- challenges depend on data: total size, # REs, # RE units, overdispersion, design complexity ...

| 4 同 🕨 🔺 🚍 🕨 🤘

More info: glmm.wikidot.com

Acknowledgements

- Data: Josh Banta and Massimo Pigliucci (*Arabidopsis*); Adrian Stier and Sea McKeon (coral symbionts); Courtney Kagan, Jocelynn Ortega, David Julian (*Glycera*);
- Co-authors: Mollie Brooks, Connie Clark, Shane Geange, John Poulsen, Hank Stevens, Jada White

References

- Breslow, N.E., 2004. In D.Y. Lin and P.J. Heagerty, editors, Proceedings of the second Seattle symposium in biostatistics: Analysis of correlated data, pages 1–22. Springer. ISBN 0387208623.
- Molenberghs, G. and Verbeke, G., 2007. The American Statistician, 61(1):22–27. doi:10.1198/000313007X171322.

Vaida, F. and Blanchard, S., 2005. Biometrika, 92(2):351-370. doi:10.1093/biomet/92.2.351.

(日)