GLMMs in R: analyzing overdispersed data

Ben Bolker

June 1, 2010

Looking for the simplest possible example that encapsulates overdispersion which can be sensibly modeled via lognormal-Poisson approaches (i.e., individual-level random effects).

Unfortunately I haven’t yet found a good, non-problematic dataset that uses Poisson or binomial data, has overdispersion, but doesn’t have other issues [zero-inflation, too small/messy for straightforward analysis, etc.] ...(“All [simple data sets] are alike. Every [messy data set] is [messy] in its own way.”)

From [http://glmm.wikidot.com/faq]

- quasilikelihood estimation: MASS::glmmPQL (the “quasi-” families may be unreliable in lme4, and may disappear; not clear whether there is a good theoretical foundation for extending quasilikelihood to the GLMM case);
 geepack::geeglm, gee::gee

- individual-level random effects (MCMCglmm or hacked lme4) [or WinBUGS or AD Model Builder or ...] [note that individual-level random effect estimation is probably dodgy for PQL approaches]

- alternative distributions
 - Poisson-lognormal (see above, “individual-level random effects”)
 - negative binomial
 * glmmADMB::glmm.admb (off-CRAN: http://otter-rsch.com/admbre/examples/glmmadmb/glmmADMB.html)
 * repeated::gnlmm (off-CRAN: http://www.commanster.eu/rcode.html)
 * WinBUGS/JAGS (via R2WinBUGS/Rjags)
 * AD Model Builder (via R2ADMB?)

- beta-binomial: all of the above except (?) MCMCglmm, glmm.admb

- zero-inflated: all of the above except gnlmm
1 Examples (simulation)

It's easy enough to generate lognormal-Poisson-distributed “data” and show that a (hacked) version of lme4 recovers them appropriately, but it may not be very informative. This is a basic Poisson simulation with a single covariate (uniformly randomly distributed), random intercept differences among blocks, and random intercept differences among individuals.

```r
> simfun <- function(ng = 20, nr = 100, fsd = 1, indsd = 0.5, b = c(1, + 2)) {
+   ntot <- nr * ng
+   b.reff <- rnorm(ng, sd = fsd)
+   b.rind <- rnorm(ntot, sd = indsd)
+   x <- runif(ntot)
+   dd <- data.frame(x, f = factor(rep(LETTERS[1:ng], each = nr)),
+                     obs = 1:ntot)
+   dd$eta0 <- model.matrix(~x, data = dd) %*% b
+   dd$eta <- with(dd, eta0 + b.reff[f] + b.rind[obs])
+   dd$mu <- exp(dd$eta)
+   dd$y <- with(dd, rpois(ntot, lambda = mu))
+   dd
+ }

Try it out:

```r
> library(lme4)
> set.seed(1001)
> dd <- simfun()
> (m0 <- glmer(y ~ x + (1 | f), family = "poisson", data = dd))
```

Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ x + (1 | f)
Data: dd
AIC  BIC logLik deviance
12768 12785 -6381 12762
Random effects:
Groups  Name   Variance  Std.Dev.
       f  (Intercept) 1.4459 1.2024
Number of obs: 2000, groups: f, 20

Fixed effects:
            Estimate Std. Error   z value  Pr(>|z|)
(Intercept) 1.08635   0.26935     4.03 5.5e-05  ***
  x           2.08502  0.01914    108.92 < 2e-16  ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
  (Intr)
x -0.046

> (m1 <- glmer(y ~ x + (1 | f) + (1 | obs), family = "poisson",
+   data = dd))

Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ x + (1 | f) + (1 | obs)
Data: dd
AIC  BIC logLik deviance
 4598 4620 -2295 4590
Random effects:
Groups   Name   Variance  Std.Dev.
  obs  (Intercept) 0.23339  0.48311
   f   (Intercept) 1.42310  1.19294
Number of obs: 2000, groups: obs, 2000; f, 20

Fixed effects:
           Estimate  Std. Error   z value Pr(>|z|)
  (Intercept) 0.9920       0.2686    3.69  0.000222 ***
x           2.0501       0.0498   41.17  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
  (Intr)
x -0.102

A summary function to fit the full model and extract parameters:

> cfun  <- function(d) {
+   m <- glmer(y ~ x + (1 | f) + (1 | obs), family = "poisson",
+               data = d)
+   c(sqrt(unlist(VarCorr(m))), fixef(m))
+ }

Run it 50 times:

> rr <- replicate(50, cfun(simfun()))

This works pretty well (Figure 1).

2 Examples (real)

- Count data: sheep tick burdens on the heads of red grouse chicks
  (Elston et al., 2001):
Figure 1: Basic results for Poisson-lognormal model
Originally analyzed with the “GLMM procedure in Genstat 5.4.1 (Genstat 5 Committee, 1997; Payne & Arnold, 1998) and the SAS GLIMMIX macro (Littell et al. 1996)”. (Both of these are marginal [P/MQL] algorithms, individual-level effect estimation is supposed to be dodgy in this case . . . although I don’t have a peer-reviewed reference handy [see e.g. the paragraph headed “final remark” in https://stat.ethz.ch/pipermail/r-sig-mixed-models/2008q4/001488.html].

– I can run MASS::glmmPQL, but don’t get the same results as quoted in the paper — haven’t looked into the details . . .

– When I try to run this analysis in a hacked version of lme4 I get Cholmod . . . ‘not positive definite’ and mer_finalize . . . false convergence warnings . . .

– In MCMCglmm, I get Mixed model equations singular: use a (stronger) prior after 8000 iterations.

In any case, this does not look like a straightforward/simple analysis.


– I have run this analysis in lme4, and the results are reasonably sensible. However, the residuals are a bit funny, and Alain Zuur has mentioned that he is going to use the data in a methods paper on zero-inflation.

– could try this in glmm.admb or MCMCglmm, which both allow zero-inflation

• Count data: gopher tortoise shell counts (Ozgul et al. 2009): tried analysis in various ways, ended up coding in WinBUGS. Random effect (site) has quite limited sample sizes (only 10 sites), and glmer finds a best estimate of zero variance among sites (even among sites once we drop the overdispersion variation).

• Binomial data: Glycera cell survival I’m working on an analysis of a big factorial experiment on the response of Glycera (a marine worm) cells to various stressors. The data aren’t (yet) mine to release. In addition, I had convergence problems with glmer — I ended up analyzing the data with MCMCglmm. (The version of glmer in lme4a gives slightly different results (more than round-off error), and does not produce convergence warnings . . .

• I have various binary data sets, but these are not particularly good for exploring overdispersion, because overdispersion is unidentifiable in binary data.
References


