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Looking for the simplest possible example that encapsulates overdisper-
sion which can be sensibly modeled via lognormal-Poisson approaches (i.e.,
individual-level random effects).

Unfortunately I haven’t yet found a good, non-problematic dataset that uses
Poisson or binomial data, has overdispersion, but doesn’t have other issues [zero-
inflation, too small/messy for straightforward analysis, etc.] . . . (“All [simple
data sets] are alike. Every [messy data set] is [messy] in its own way.”)

From http://glmm.wikidot.com/faq:

� quasilikelihood estimation: MASS::glmmPQL (the “quasi-” families may be
unreliable in lme4, and may disappear; not clear whether there is a good
theoretical foundation for extending quasilikelihood to the GLMM case);
geepack::geeglm, gee::gee

� individual-level random effects (MCMCglmm or hacked lme4) [or WinBUGS
or AD Model Builder or . . . ] [note that individual-level random effect
estimation is probably dodgy for PQL approaches]

� alternative distributions

– Poisson-lognormal (see above, “individual-level random effects”)

– negative binomial

* glmmADMB::glmm.admb (off-CRAN: http://otter-rsch.com/
admbre/examples/glmmadmb/glmmADMB.html)

* repeated::gnlmm (off-CRAN: http://www.commanster.eu/
rcode.html)

* WinBUGS/JAGS (via R2WinBUGS/Rjags)
* AD Model Builder (via R2ADMB?)

� beta-binomial: all of the above except (?) MCMCglmm, glmm.admb

� zero-inflated: all of the above except gnlmm
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1 Examples (simulation)

It’s easy enough to generate lognormal-Poisson-distributed“data”and show that
a (hacked) version of lme4 recovers them appropriately, but it may not be very
informative. This is a basic Poisson simulation with a single covariate (uniformly
randomly distributed), random intercept differences among blocks, and random
intercept differences among individuals.

> simfun <- function(ng = 20, nr = 100, fsd = 1, indsd = 0.5, b = c(1,

+ 2)) {

+ ntot <- nr * ng

+ b.reff <- rnorm(ng, sd = fsd)

+ b.rind <- rnorm(ntot, sd = indsd)

+ x <- runif(ntot)

+ dd <- data.frame(x, f = factor(rep(LETTERS[1:ng], each = nr)),

+ obs = 1:ntot)

+ dd$eta0 <- model.matrix(~x, data = dd) %*% b

+ dd$eta <- with(dd, eta0 + b.reff[f] + b.rind[obs])

+ dd$mu <- exp(dd$eta)

+ dd$y <- with(dd, rpois(ntot, lambda = mu))

+ dd

+ }

Try it out:

> library(lme4)

> set.seed(1001)

> dd <- simfun()

> (m0 <- glmer(y ~ x + (1 | f), family = "poisson", data = dd))

Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ x + (1 | f)

Data: dd
AIC BIC logLik deviance

12768 12785 -6381 12762
Random effects:
Groups Name Variance Std.Dev.
f (Intercept) 1.4459 1.2024
Number of obs: 2000, groups: f, 20

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.08635 0.26935 4.03 5.5e-05 ***
x 2.08502 0.01914 108.92 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Correlation of Fixed Effects:
(Intr)

x -0.046

> (m1 <- glmer(y ~ x + (1 | f) + (1 | obs), family = "poisson",

+ data = dd))

Generalized linear mixed model fit by the Laplace approximation
Formula: y ~ x + (1 | f) + (1 | obs)

Data: dd
AIC BIC logLik deviance
4598 4620 -2295 4590
Random effects:
Groups Name Variance Std.Dev.
obs (Intercept) 0.23339 0.48311
f (Intercept) 1.42310 1.19294
Number of obs: 2000, groups: obs, 2000; f, 20

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.9920 0.2686 3.69 0.000222 ***
x 2.0501 0.0498 41.17 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr)

x -0.102

A summary function to fit the full model and extract parameters:

> cfun <- function(d) {

+ m <- glmer(y ~ x + (1 | f) + (1 | obs), family = "poisson",

+ data = d)

+ c(sqrt(unlist(VarCorr(m))), fixef(m))

+ }

Run it 50 times:

> rr <- replicate(50, cfun(simfun()))

This works pretty well (Figure 1).

2 Examples (real)

� Count data: sheep tick burdens on the heads of red grouse chicks
(Elston et al., 2001):
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Figure 1: Basic results for Poisson-lognormal model
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– Originally analyzed with the “GLMM procedure in Genstat 5.4.1
(Genstat 5 Committee, 1997 ; Payne & Arnold, 1998) and the SAS
GLIMMIX macro (Littell et al. 1996)”. (Both of these are marginal
[P/MQL] algorithms, individual-level effect estimation is supposed to
be dodgy in this case . . . although I don’t have a peer-reviewed refer-
ence handy [see e.g. the paragraph headed“final remark”in https://
stat.ethz.ch/pipermail/r-sig-mixed-models/2008q4/001488.html].

– I can run MASS::glmmPQL, but don’t get the same results as quoted
in the paper — haven’t looked into the details . . .

– When I try to run this analysis in a hacked version of lme4 I get
Cholmod ... ’not positive definite’ and mer_finalize ... false convergence
warnings . . .

– In MCMCglmm, I get Mixed model equations singular: use a (stronger)
prior after 8000 iterations.

In any case, this does not look like a straightforward/simple analysis.

� Count data: owl nestling begging (Roulin and Bersier, 2007), repro-
duced as an example in Zuur et al. (2009): data available from http:
//www.highstat.com/Book2/ZuurDataMixedModelling.zip

– I have run this analysis in lme4, and the results are reasonably sen-
sible. However, the residuals are a bit funny, and Alain Zuur has
mentioned that he is going to use the data in a methods paper on
zero-inflation.

– could try this in glmm.admb or MCMCglmm, which both allow zero-
inflation

� Count data: gopher tortoise shell counts (Ozgul et al., 2009): tried
analysis in various ways, ended up coding in WinBUGS. Random effect
(site) has quite limited sample sizes (only 10 sites), and glmer finds a best
estimate of zero variance among sites (even among sites once we drop the
overdispersion variation).

� Binomial data: Glycera cell survival I’m working on an analysis of a
big factorial experiment on the response of Glycera (a marine worm) cells
to various stressors. The data aren’t (yet) mine to release. In addition, I
had convergence problems with glmer — I ended up analyzing the data
with MCMCglmm. (The version of glmer in lme4a gives slightly different
results (more than round-off error), and does not produce convergence
warnings . . .

� I have various binary data sets, but these are not particularly good for
exploring overdispersion, because overdispersion is unidentifiable in binary
data.
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