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1 Preliminaries
The purpose of this document is to explore/explain some of the nitty-gritty
details of fitting, and making inferences from, GLMMs in R. It may turn into a
“real paper” at some point; we’ll see.

The data are from Adrian Stier and Sea McKeon, and represent trials of
Culcita sea stars attacking coral that harbor differing combinations of protec-
tive symbionts (crabs and shrimp). The design is a randomized complete block
design with some replication (2 replications per treatment per block, 4 treat-
ments (no symbionts, crabs alone, shrimp alone, both crabs and shrimp), each of
these units of 8 repeated in 10 blocks). The data represent a reasonably typical
small-scale ecological field experiment.

Some issues that do not arise in this example:

� extremely large data sets (requiring concerns for computational efficiency
and stability)

� extremely small (5–6 or less) numbers of random effect units that have to
be dealt with in some special way (treatment as fixed effects or supply of
a Bayesian prior (Gelman, 2006))

� crossed random effects

� overdispersion

� spatial or temporal correlations that decrease with separation in space or
time

� other interesting correlation structures (phylogenetic?)

� lack of balance

The basic data can be reduced, for the purposes of this exercise, to a single
treatment (ttt) [which consists of combinations of different symbionts: crab,
shrimp, both or neither, but never mind]; a binary response (predation); and
a blocking factor (block).

Data entry/summary:
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> x=read.csv("culcitalogreg.csv",

+ colClasses=c(rep("factor",2),

+ "numeric",

+ rep("factor",6)))

> ## abbreviate slightly

> levels(x$ttt.1) <- c("none","crabs","shrimp","both")

Adjust contrasts for the treatment, to compare (1) no-symbiont vs symbiont
cases, (2) crabs vs shrimp, (3) effects of a single pair/type of symbionts vs effects
of having both:

> contrasts(x$ttt)=

+ matrix(c(3,-1,-1,-1,

+ 0,1,-1,0,

+ 0,1,1,-2),

+ nrow=4,

+ dimnames=list(c("none","C","S","CS"),

+ c("symb","C.vs.S","twosymb")))

2 Plots
Two ways to plot the data:

1. A basic barplot that loses information on blocks but gives the distribution
of numbers of predation events per block:

> library(reshape)

> m <- melt(x[,c(1,4,3)],id.vars=1:2)

> m3 <- recast(m,ttt.1+block~variable,fun.aggregate=sum)

> p <- with(m3,table(predation,ttt.1))

> op <- par(las=1,cex=1.5,bty="l")

> bb <- barplot(p,ylab="Number of blocks",xlab="Symbionts",

+ main="Number of predation events",

+ col=gray(c(1,0.8,0.5)))

> ## the rest of this is fanciness to plot the values

> ## within the bar segments (rather than just

> ## a plain old legend)

> bloc <- apply(p,2,cumsum)

> midb <- rbind(bloc[1,]/2,

+ (bloc[1,]+bloc[2,])/2,

+ (bloc[2,]+bloc[3,])/2)

> text(bb[col(p)][p>0],midb[p>0],c(0,1,2)[row(p)][p>0])

> par(op)
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2. A (too?) clever strip plot that shows the pattern for each block:

> library(lattice)

> ctab <- with(x,as.data.frame.table(tapply(predation,list(block,ttt.1),sum)))

> names(ctab) <- c("block","ttt","pred")

> ctab$rblock <- with(ctab,

+ reorder(block,pred))

> ctab$jpred <- ctab$pred+seq(-0.1,0.1,length.out=10)[ctab$rblock]

> print(stripplot(jpred~ttt,groups=block,data=ctab,

+ type=c("p","l"),ylab="Predation events by block",

+ scales=list(y=list(tick.number=3))))
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A simpler plot, or one based on model fits?

3 Basic fits
should I try to test the ttt:block interaction? Probably will be a mess since
within-block/treatment replication is so limited (two binary samples), but worth
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it for completeness?

3.1 glm (base R)
Fit without blocking (i.e., no random effects):

> mod1 = glm(predation ~ ttt, binomial, data = x)

3.2 glmer (lme4)
Fitting with the default Laplace approximation and with adaptive Gauss-Hermite
quadrature (abbreviated sometimes as AGQ and sometimes as (A)GHQ):

> library(lme4)

> ## Laplace

> mod2 <- glmer(predation~ttt+(1|block),family=binomial,data=x)

> ## AGQ

> mod2B <- glmer(predation~ttt+(1|block),family=binomial,

+ nAGQ=8,data=x)

3.3 glmmML (glmmML)
The glmmML function is in a separate package (the glmmML package, surprisingly
enough). It handles only random intercept models with a single blocking factor
(I chose nAGQ=8 above to match the default number of AGQ points (8) for
glmmML with method="ghq").

> library(glmmML)

> ## Laplace (default)

> mod3=glmmML(predation~ttt,family=binomial,data=x,cluster=block)

> ## AGQ (=GHQ) with 8 points

> mod3B=glmmML(predation~ttt,family=binomial,data=x,cluster=block,

+ method="ghq")

Fitting with Laplace gives a warning: Hessian non-positive definite.
No variance! This means it can fit the model but fails to get (approximate)
standard errors for the parameters. We’ll decide later whether we want to worry
about this.

3.4 glmm (repeated)
Jim Lindsey’s repeated package (available not from CRAN, but from http:
//www.commanster.eu/rcode.html) contains the glmm function:

> library(repeated)

> mod7=glmm(cbind(predation,1-predation)~ttt,family=binomial,

+ data=x,nest=block,points=8)

> mod7.ci = confint(mod7) ## not reliable!

Have to specify predation as (k,N − k), glmm apparently doesn’t recognize
binary data as such. glmm has a confint method, which is supposed to compute
profile confidence intervals, but it gives ridiculously optimistic results, so we’ll
fall back on the estimated standard errors for CIs below.
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3.5 glmmADMB
> library(glmmADMB)

================================================================================

Welcome to glmmADMB

================================================================================

> mod4 = glmm.admb(predation ~ ttt, random = ~1, group = "block",

+ data = x, family = "binomial", link = "logit")

Can supposedly improve the Laplace fit with importance sampling, but I
didn’t really understand the meaning of the impSamp parameter from the docu-
mentation, and got errors when I tried setting it > 0 (after step 2: The func-
tion maximizer failed). (This is mentioned, but not discussed much in, the
glmm.admb help page: probably need to see ref therein: Skaug and Fournier
(2004), which has a line about importance sampling, further referencing Skaug
(2002).

3.6 MCMCglmm
Would have tried MCMCglmm, but it is impossible to run MCMCglmm models without
individual-level random effects — which in this case (with binary data) causes
convergence problems.

3.7 glmmBUGS
(Have to do this next bit carefully: both of the next two approaches load the
nlme package (used by glmmPQL). Since nlme and lme4 conflict, we have to
unload/reload the packages.)

> detach("package:lme4")

> library(MASS)

> library(nlme)

The glmmBUGS package is supposed to translate a mixed-model statement
into BUGS code which can then be run via R2WinBUGS.

This doesn’t quite work — first because the binomial-family specification
doesn’t get translated correctly (a dbin(x) specification should read dbin(x,1)),
and then from an unknown BUGS problem . . .

> library(glmmBUGS)

> gg1 <- glmmBUGS(predation ~ ttt, data = x, effects = "block",

+ family = "binomial")

> startingValues <- gg1$startingValues

> source("getInits.R")

> library(R2WinBUGS)

> gg2 <- bugs(gg1$ragged, getInits, parameters.to.save = names(getInits()),

+ working.directory = getwd(), model.file = "model.bug")
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3.8 glmmPQL
Also worth trying with glmmPQL (which uses a less reliable algorithm, but is
more flexible etc.):

> mod5 = glmmPQL(predation ~ ttt, random = ~1 | block, family = binomial,

+ data = x)

> pqlfix <- fixef(mod5)

> pqlfix.se <- summary(mod5)$tTable[, "Std.Error"]

> pqlran <- as.numeric(VarCorr(mod5)["(Intercept)", "StdDev"])

> detach("package:nlme")

> library(lme4)

3.9 BUGS
Or, we can simply write our own BUGS file:

1 model {
2 for (i in 1:N) {
3 lprob[i] <- b[1]*mm[i,1]+b[2]*mm[i,2]+
4 b[3]*mm[i,3]+b[4]*mm[i,4]+ eps[block[i]]
5 prob[i] <- 1/(1+ exp(-lprob[i]))
6 ## for JAGS compatibility , don 't use logit(prob[i]) <-
7 ## also appears to improve stability!
8 predation[i] ~ dbin(prob[i],1)
9 }

10 for (i in 1: nblock) {
11 eps[i] ~ dnorm(0,tau.block)
12 }
13 ## priors
14 for (i in 1:4) {
15 b[i] ~ dnorm (0 ,0.01)
16 }
17 tau.block ~ dgamma (0.01 ,0.01)
18 sd.block <- 1/sqrt(tau.block)
19 }

> library(R2WinBUGS)

> mm <- model.matrix(predation ~ ttt, data = x)

> bugsdata <- list(mm = mm, N = nrow(x), nblock = length(levels(x$block)),

+ block = as.numeric(x$block), predation = x$predation)

> bugsinit <- list(list(b = c(0.5, rep(0, 3)), eps = rep(0, 10),

+ tau.block = 1), list(b = c(0.5, rep(-0.5, 3)), eps = rep(0,

+ 10), tau.block = 1), list(b = c(0.5, rep(0.5, 3)), eps = rep(0,

+ 10), tau.block = 1))

> b1 <- bugs(data = bugsdata, inits = bugsinit, parameters = c("b",

+ "eps", "tau.block", "sd.block"), model.file = "culcita_bugs.txt",

+ n.chains = 3, n.iter = 4000, working.directory = getwd())
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We can get 95% credible intervals . . .

> library(emdbook)

> b2 <- as.mcmc.list(b1)

> b3 <- lump.mcmc.list(b2)

> head(coda::HPDinterval(b3), 4)

lower upper
b[1] -1.9910 5.3590
b[2] 0.5678 2.1790
b[3] -1.6150 0.9084
b[4] -0.2228 1.3590

. . . or examine the posterior densities (of block effect expressed as precision
(τ) or standard deviation (σ) . . .

> b4 <- lapply(b2, function(x) {

+ x[, c("sd.block", "tau.block")]

+ })

> class(b4) <- "mcmc.list"

> print(densityplot(b4, from = 0))
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3.10 glmmAK
The glmmAK package is a lesser-known alternative. Its range of allowed models is
small (logistic and Poisson regression, plus multinomial/ordinal logistic regres-
sion), and its interface is a bit quirky . . . I think the specification below gives a
model that is equivalent to the BUGS model above . . .

> library(glmmAK)

> mod6 = cumlogitRE(y = x$predation, x = mm[, -1], intcpt.random = TRUE,

+ cluster = x$block, prior.fixed = list(mean = 0, var = 100),

+ prior.random = list(Ddistrib = "gamma", Dshape = 0.01, DinvScale = 100),

+ nsimul = list(niter = 6000, nthin = 40, nburn = 2000))
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> mod6fixchain <- read.table("betaF.sim", header = TRUE)

> mod6rechain <- read.table("varR.sim", header = TRUE)

> b6 = as.mcmc(cbind(mod6fixchain, sqrt(mod6rechain[, 1])))

SAS, ASREML/Genstat, others?

3.11 Comparisons
(Ugly code suppressed here — look at the original Sweave file if you want the
gory details on extracting coefficients, standard errors, etc. from the model fits.)

(Intercept) tttsymb tttC.vs.S ttttwosymb sdran
glm 0.651 0.516 -0.102 0.168 0.000
glmmPQL 0.995 0.810 -0.203 0.329 2.154
glmer.Laplace 1.628 1.156 -0.294 0.487 3.437
glmmML.Laplace 1.628 1.156 -0.294 0.487 3.437
glmmADMB.Laplace 1.628 1.156 -0.294 0.488 3.448
glmer.AGQ 1.605 1.148 -0.295 0.489 3.401
glmmML.AGQ 1.602 1.139 -0.306 0.497 3.511
glmm_repeated.AGQ 0.257 1.108 -0.386 0.511 4.471
BUGS.MCMC 1.748 1.400 -0.400 0.613 5.066
glmmAK.MCMC 3.148 1.627 -0.508 0.813 9.287

Conclusions: ignoring the random effect underestimates all of the fixed ef-
fect sizes (this is more or less as expected); PQL underestimates the standard
deviation of the random effect by about 50% relative to Laplace/AGQ. Laplace
and AGQ give very similar answers: the Laplace results are identical across all 3
packages tried. AGQ makes a small difference, but even the direction of change
depends on which implementation you use. (I wouldn’t say that any of these
differences are large enough to concern us in practice in this case). The two
MCMC-based methods, BUGS and glmmAK, give substantially higher estimates
of the fixed and random effects (this is not due to asymmetry of the posterior
distributions/differences between the mode and the mean of the posterior).

By analogy with randomized complete block designs for LMMs, the “denom-
inator df” for this problem should be 27 = (10 − 1) × (4 − 1): see for example
http://www.tfrec.wsu.edu/ANOVA/RCBsub.html. Add confidence intervals,
crudely based on Wald intervals with 27 df (except for BUGS/glmmAK results,
which are credible intervals):

(glmmADMB gives a standard deviation of the variance estimate, but σ̂2 = 11.9
and its standard deviation is supposed to be 8.8, so I can’t really use it to
construct sensible confidence intervals.)
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4 Inference
4.1 Wald Z tests
These are given (for fixed effects) by both packages as Pr(>|z|) in the stan-
dard model print-out (they’re missing for glmmML/Laplace because there was
a computational problem) and suggest that there is an effect of having any sym-
bionts at all (ttt1), but that crabs are not different from shrimp (ttt2) and
that having two symbionts isn’t any better than having one (ttt3). Replicating
the results for the glmmML code here (this appears in summary(mod3B), but it
doesn’t look like this function call returns anything useful — it just prints the
object in the usual way).

> csd <- mod3B$coef.sd

> z.table <- cbind(coef(mod3B), csd, coef(mod3B)/csd, pnorm(abs(coef(mod3B))/csd,

+ lower.tail = FALSE) * 2)

> colnames(z.table) <- c("coef", "se(coef)", "Z", "Pr(>|Z|)")

> round(z.table, 4)

coef se(coef) Z Pr(>|Z|)
(Intercept) 1.6017 1.2818 1.2496 0.2115
tttsymb 1.1387 0.3581 3.1801 0.0015
tttC.vs.S -0.3062 0.5615 -0.5454 0.5855
ttttwosymb 0.4971 0.3458 1.4378 0.1505

You can get equivalent fits from the glmer fit (summary(mod2B)@coefs) or
the glmm fit (coef(summary(mod7))).

The main problems with this analysis are (1) it doesn’t take account of the
residual degrees of freedom/uncertainty in standard error estimates (asymptotic
resullts) and (2) it’s a fairly crude, Wald-based estimate — not clear whether
the null distribution of the parameter estimates divided by their standard errors
is really normal Z (or t) in this case (3) it tests parameters (contrasts) one at
a time. (I’ve written a waldF() function to compute Wald F tests — it can be
found in glmmfuns.R).
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4.2 Wald t tests
One of the harder parts of GLMMs (in the traditional Wald- or F -testing ap-
proach) is figuring out the appropriate degrees of freedom. As mentioned above,
I will use (10− 1)× (4− 1) = 27 df as the denominator df (may check later that
this actually fits the null Wald distribution . . . ). (For the same model, nlme’s
“inner-outer” approach (Pinheiro and Bates, 2000) gives 37 df instead — but
this is only the difference between a critical value of 2.052 for 27 df and 2.026
for 37 df, vs. the magic 1.96 for a Z test.)

None of the tests we did cross the magic p < 0.05 line in either direction
under these circumstances (results are similar for glmer):

> round(Z.to.t(z.table, 27), 3)

coef se(coef) t value Pr(>|t|)
(Intercept) 1.602 1.282 1.250 0.222
tttsymb 1.139 0.358 3.180 0.004
tttC.vs.S -0.306 0.562 -0.545 0.590
ttttwosymb 0.497 0.346 1.438 0.162

Z.to.t() is a small function to hack Z tables (provided e.g. by glmer and
glmm into t tables, provided that you can specify the appropriate “denominator”
degrees of freedom.

This is of course not using any of the fancy technology (which Doug Bates dis-
trusts) for computing corrected degrees of freedom (Satterthwaite or Kenward-
Roger) — but which may not be necessary here in any case.

4.3 LRT
It is possible, but strongly advised against, to use Likelihood Ratio tests to
make inferences about fixed effects (Pinheiro and Bates, 2000) — it might be the
recommended way to make inferences about random effects. (Fabian Scheipl’s
RLRSim package is probably the best way to make inferences on significance
of random effects in simple LMMs, but it handles neither GLMMs nor more
complex (crossed, multi-random-factor, etc.) LMMs.)

One problem with testing the random effects here is that glmer can’t fit mod-
els with no random effects at all. In principle we can compare the log-likelihood
from glmer (with block effects) to that from glm (without block effects). In
practice we have to be very careful when comparing log-likelihoods calculated
by different functions, because they can incorporate (or drop) different additive
constants (which makes no difference when we compare results computed by
the same function, but can screw us up when we compare results computed by
different functions).

Ways to check/test this: (1) look at the code for both functions (ugh); (2)
simulate data with a very small or zero block effect, fit it with glmer and glm
(presumably getting a very small/zero estimate of the random effect and hence
similar log-likelihoods), and compare; (3) set the variance parameter in the
glmer fit to zero and re-evaluate (this is what I do below).
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Using the varprof function (too ugly to show here — defined in glmmfuns.R)
which computes a deviance profile by varying the value of the random-effects
standard deviation, we can show the profile.

> profres <- varprof(mod2B)

since I’m not that interested in inference on random effects in this case, this
section is a little dusty/could use some work

In the figure below, the solid line is the critical level for the LRT based on a
χ2 distribution with 1 df, the dashed line is for χ2

1/2 (see “boundary effects” in
the GLMM paper for why χ2

1/2 may be more appropriate). The p value based
on this distribution is 0.
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The deviance calculated by glmer for σ = 0 is 111.05; the deviance calculated
by glm is 94.97 [shown in red in the figure], so the computed log-likelihoods do
not match — we were right to be careful. (That, or I made some other mistake
here.)

The 95% profile confidence limits on the random-effects sd, based on χ2
1/2

(see below for why I think this is the best answer) are {2.02,5.96} (see ugly
invisible code above, taken out of one of the mle profiling functions, for how to
get these numbers). (This value takes boundary effects into account, but not
finite sample size — from that point of view, it may be a little bit conservative.)

We can also get likelihood profiles for the fixed effects. The basic recipe is
to leave one fixed effect parameter (the one being profiled) out of the model;
use the offset argument to glmer to set it to a particular (fixed) value; and
re-fit the model. For factors this is a little bit trickier because it’s hard to leave
one parameter out of the model. The way I ended up doing this was a bit of a
hack — treating the model as a regression analysis on the individual columns of
the model matrix (it would be easier if one could pass a model matrix directly).
Right now the code is fairly ugly and fairly specific to this problem, it could
certainly be cleaned up and generalized . . .

Plots of the deviance profiles for each fixed-effect parameter. Red lines are
quadratic approximations based on the local curvature, as used in the Wald
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Z tests; horizontal lines are the LRT cutoff — for quadratic approximations,
equivalent to the Wald Z 95% critical value.

> vals <- fixprof(mod2B)
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The profile for the intercept ran into some numerical difficulties beyond about
3.5 — these are simply not shown on the plot.

compare likelihood profile confidence intervals (based on asymptotic χ2
1, or

on a scaled F1,27 or F1,?? ?) with Wald Z/t

4.4 AIC
Finish this!

Both glmmML and glmer fits will give AIC values, although it is a bit tricky
to get them — I had to write the extractor methods for glmmML myself.

> library(stats4)

> sapply(list(mod2, mod3, mod2B, mod3B), AIC)

ML ML
70.70584 70.70584 74.82970 70.30988

> sapply(list(mod2, mod3, mod2B, mod3B), logLik)

ML ML
-30.35292 -30.35292 -32.41485 -30.15494

Same issues about comparing log-likelihoods from different functions apply
here, too, but with additional complication – parameter counting (as well as
likelihood constants) can differ among functions, e.g. whether one includes an
implicitly estimated variance term or not. So you have to be careful. Once
you have the log-likelihoods, though, it is fairly easy to figure out how a given
function is counting — easier than working out the log-likelihood comparisons
(see above).
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5 Randomization/simulation approaches
The idea here is to simulate from the null model (zero block effect, or zero for
some treatment effect or combination of effects), refit the full model, get some
summary statistics – the log-likelihood or deviance (or Z or t statistic) – and
repeat. For many (1000 or so) simulations these statistics will give the null
distribution, which you can then compare against the observed values.

In general, this is fairly simple (not necessarily even worth packing into/hid-
ing behind a function): fit the reduced model; use simulate to generate new
realizations from the reduced model; for each realization, use refit to refit the
full model and (possibly) the reduced model to the data simulated from the
reduced model; and compute some sort of summary statistics (deviance/log-
likelihood difference, Z/t statistic, ?).

5.1 Random effects
Also a little dusty — redo along the lines of the fixed effect example below?

For dropping the only random effect from the model we can do almost the
same thing, but we have a little problem — we need to simulate from a glm fit
instead of a reduced glmer fit, because glmer can’t fit models with no random
effects. (In this case I had to write simulate.glm since it didn’t exist: it’s in
glmmprof.R.)

As promised, the code is actually pretty simple. The extra complexities are:

� a little bit of code to load previously computed results from a file/save the
results to a file (since this is computationally intensive);

� because glm computes likelihood differently from glmer, we use the ze-
rodev function (defined above) to return the value of the deviance when a
model is refitted with the random-effects standard deviation forced equal
to zero — rather than what we would usually do, refitting a glm model to
the new realization and computing the deviance that way

> if (file.exists("glmersim1.RData")) {

+ load("glmersim1.RData")

+ } else {

+ svals <- simulate(mod1, nsim = 1000)

+ t0 <- system.time(sim1 <- apply(svals, 2, function(x) {

+ r <- refit(mod2, x)

+ zerodev(r) - deviance(r)

+ }))

+ save("svals", "t0", "sim1", file = "glmersim1.RData")

+ }

(this took 26 seconds on my laptop). The following figure compares the χ2
1

distribution with the actual distribution of deviance differences:
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The next figure compares the observed null distribution to the χ2
1/2 distri-

bution. (The quantiles of this distribution are equivalent to χ2
1(1 − 2α), e.g.

the 95% quantile is equal to the 90% quantile for χ2
1. The qchibarsq func-

tion from the emdbook package is a convenience function that implements this
distribution.)

The solid line, which looks really bad, intersects the (0.25,0.75) quantiles —
this distribution is extremely skewed, so most of the points actually fall in the
lower left-hand corner. The dashed line (admittedly cherry-picked) intersects
the (0.25,0.95) quantiles and seems OK (this varies by realization — it looked
better for a previous set of simulation results . . . )
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The critical values/quantiles from the simulated and the χ2
1/2 distribution:

> cbind(sim = quantile(sim1, c(0.9, 0.95, 0.99)), qhalf = qchibarsq(c(0.9,

+ 0.95, 0.99)))

sim qhalf
90% 1.121128 1.642374
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95% 2.157363 2.705543
99% 5.454854 5.411894

> obsdev <- c(zerodev(mod2B) - (-2 * logLik(mod2B)))

Estimated p values for the random effect from simulated and χ2
1/2 (both very

very small):

> pchibarsq(obsdev, lower.tail = FALSE)

ML
5.295299e-12

> mean(c(sim1, obsdev) >= obsdev)

[1] 0.000999001

This is essentially 1/1001 — it is general practice (ref???) to include the ob-
served value in the set of null-hypothesis values, which means that the minimum
p-value achieved in this way is 1/(N + 1).

5.2 Fixed effects
Permutation
A basic function (maybe there is a better way?) to permute predation events
within blocks:

> permfun <- function(x) {

+ r <- do.call("rbind",

+ lapply(split(x,x$block),

+ function(z) {

+ z$predation <- sample(z$predation)

+ z

+ }))

+ ## to use refit(), we have to make sure that

+ ## we reassemble into the proper order matching the original

+ ## data -- better/cleaner way to do this?

+ r[order(r$ttt,as.numeric(as.character(r$block))),]

+ }

Check that it preserves the structures we want:

> ## experimental design --- ttt * block

> with(permfun(x),table(block,ttt))

ttt
block 1 2 3 4

1 2 2 2 2
10 2 2 2 2
2 2 2 2 2
3 2 2 2 2
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4 2 2 2 2
5 2 2 2 2
6 2 2 2 2
7 2 2 2 2
8 2 2 2 2
9 2 2 2 2

> ## total predation events

> c(sum(x$predation),sum(permfun(x)$predation))

[1] 50 50

> ## predation events per block

> rbind(tapply(x$predation,list(x$block),sum),

+ tapply(permfun(x)$predation,list(x$block),sum))

1 10 2 3 4 5 6 7 8 9
[1,] 1 7 2 2 2 5 7 8 8 8
[2,] 1 7 2 2 2 5 7 8 8 8

A function to fit the full and reduced model to a new predation vector and
return the difference in deviance and the Wald statistics:

> statfun <- function(x, mod0, mod1) {

+ mod1 = try(refit2(mod1, x))

+ mod0 = try(refit2(mod0, x))

+ if (inherits(mod0, "try-error")) {

+ if (inherits(mod1, "try-error")) {

+ return(rep(NA, 5))

+ }

+ else return(c(NA, summary(mod1)@coefs[, "z value"]))

+ }

+ likratio <- c(-2 * (logLik(mod1) - logLik(mod0)))

+ wald <- summary(mod1)@coefs[, "z value"]

+ c(likratio, wald)

+ }

A function to do Monte Carlo simulation of the predation events from the
null model:

> mcfun <- function(x) {

+ my.mer.sim(mod0)

+ }

Run permutations:

> source("~/projects/glmm/glmmfuns.R")

> permvals <- as.data.frame(t(replicate(2000, statfun(permfun(x)$predation,

+ mod0, mod1))))
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Run MC simulations:

> mcvals <- as.data.frame(t(replicate(4000, statfun(mcfun(x, mod0,

+ mod1)))))

> load("culcita_mcvals_1.RData")

> load("culcita_permvals_1.RData")

Even after we throw out fits with warning messages there are 2 or 3 really
awful outliers, but we will just ignore these (doesn’t make too much difference
to p-values anyway):

Analyze MC results:

> mod1 = glmer(predation ~ ttt2 + (1 | block), data = x, family = binomial)

> mod0 = update(mod1, . ~ . - ttt2)

> mcdev <- -mcvals$ML[abs(mcvals$ML) < 50]

> permdev <- na.omit(-permvals$ML)

> obsdev <- c(2 * (logLik(mod1) - logLik(mod0)))
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The gray bars are the observed Monte Carlo distribution for simulations of
the null hypothesis —

> qqplot(mcdev, qchisq(ppoints(mcdev), df = 3), type = "l")

> abline(0, 1, col = 2)
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Permutation distribution only has 40 unique values (once we account for
numeric errors on the order of 1e-9 from fitting models with data in different
orders . . . )

> mean(obsdev <= pchisq(obsdev, 3, lower = FALSE))

[1] 0

It turns out that the LRT p-value is anticonservative in this finite-sample
case, as previously reported for typical small-sample LMMs by Pinheiro and
Bates (2000). That is, the reported or nominal p value (y axis) is generally
below the Monte Carlo p value (x axis) (or in other words, the (black) χ2

3 line
is always below the (gray) 1:1 line in the figure below.
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Also drawn in this figure are the F distributions (scaled to match the χ2
3

distribution in the large-denominator-df limit) for varying denominator df. The
line based on df2 = 27 (expectation from classic ANOVA tables). The lines for
df2 = 40 and df2 = 60 are closer, but none of them seem to match precisely —
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as Bates would say, we don’t necessarily have a reason to believe that the null
distribution of deviance differences is F distributed in any case.

do the same kinds of checks for Wald statistics and for likelihood ratio tests
for dropping individual contrasts

6 To do
� more AIC stuff, model averaging?

� incorporate profile confidence limits (backspline) in varprof code? profiling
code could be tested and polished quite a bit: (1) better ways to manipu-
late formulas and model matrices; (2) test on other models, more robust,
work out what to do about zero-intercept models, binomial responses with
multiple columns, etc. (3) make profile objects match structure of glm/mle
profile objects, so we can use the code for plotting, confidence intervals
etc.

� structured bootstrapping (by block) example? (Can easily bootstrap on
blocks: however, this will be a little slower than resampling just the re-
sponse vector; we will need to refit every time. Sampling design will
be such that we will have unbalanced data — fewer blocks, some blocks
overrepresented.) Start by splitting data by block, sample blocks with
replacement, replicate as necessary, squash back together, fit . . .

� ASReML, SAS results ??? (MLWin, Stata, ???)

� make glmmBUGS work?

� can trace of hat matrix be resurrected??

� work with simulated data of a similar size?
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